If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+40x+35=3
We move all terms to the left:
8x^2+40x+35-(3)=0
We add all the numbers together, and all the variables
8x^2+40x+32=0
a = 8; b = 40; c = +32;
Δ = b2-4ac
Δ = 402-4·8·32
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-24}{2*8}=\frac{-64}{16} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+24}{2*8}=\frac{-16}{16} =-1 $
| -10=2(x-9)+18 | | 9u+4=6 | | 9u4=6 | | 18x^2+15x-18=3x-8 | | 2(3x+12)-6x=-4(3x+2)+8 | | 18x^2+15x-8=3x-8 | | 4x-1.5=2.5+2x | | 3x+120=30 | | 3x-5(12)=(15)(8) | | -5-32x=1 | | 7(4x-)=-26+6x | | 3*6x=140+4x | | 2(6+x)=2(6+1/3x) | | 12x-16=13x=9 | | 5/x=60 | | (z+1)²+(z-2)²=(2z²-3) | | 5x+4=8-x | | (z+1)²+(z-2)²=2z²-3 | | 2x+1+x-5=95 | | x-((4x+4.5)+3.5)=2.5-(3.5-4x) | | 4x+7=(x+9)+11-8 | | x-((4x+4.5)+3.5)=2.5–(3.5-4x) | | 3x-14=2(x+8) | | 3n2+7n-66=0 | | 5(x-9)+(11-2x)=5 | | 77x+7=5 | | 3+4d=11 | | 5n^2-9=-12 | | x-51=-20 | | 2j−3=1 | | 2x+33=9 | | 5(7)+6y=-7 |